Mark scheme - Static and Charge (H)

Question			Answer/Indicative content	Marks	Guidance
1			A $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	Examiner's Comments About 80% of candidates gave the correct answer A. Common incorrect answers were randomly selected form the other distractors.
			Total	1	
2			C $\sqrt{ }$	1 (AO1.1)	Examiner's Comments A number of candidates chose A, assuming that the current was the same in each resistor, or B, assuming that the 10.0 A was equally shared. Candidates should be encouraged to read all of the question without guessing what the question is asking. Many candidates helpfully wrote tables to the right comparing currents and potential differences in series and parallel circuits. Some candidates helpfully wrote 10-2.5 and in some cases, this was added to the diagram. It is helpful in these types of question to underline quantities as the question is read.
			Total	1	
3			D V	1 (AO1.1)	Examiner's Comments This was generally well answered. Candidates who did not gain the correct answer often chose C indicating that the direction of the electric field was not fully understood.
			Total	1	
4	a	i	potential difference \checkmark closed or complete circuit \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 1.1) \end{gathered}$	IGNORE ions / charge ALLOW voltage ALLOW higher level answers eg. must have delocalised electrons / electrons that are free to move Examiner's Comments Only about 10\% here gained both marks. Delocalised electrons was a common

					correct answer for 1 mark. Less often seen were a potential difference [1] and a complete circuit [1].
		ii	```FIRST CHECK THE ANSWERON ANSWER LINE If answer \(=1500\) (C) award 4 marks \(Q=\operatorname{lt} \checkmark\) \(t=5 \times 60=300(s) \checkmark\) \(Q=5 \times 300 \checkmark\) \(Q=1500(C) \checkmark\)```	(AO1.1) (AO2.1) (AO2.1) (AO2.1)	Examiner's Comments This was reasonably well answered and about two thirds of candidates gained 3 marks for 1500 . Some forgot to convert minutes to seconds but were credited some reward for their working.
	b		Rod attracts water \checkmark Opposite charges attract \checkmark water has both + and - charges / idea of polarisation / AW \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 3 \times \\ 1.2) \end{gathered}$	IGNORE positive electrons / movement of protons / ions for this answer. ALLOW Water bends or moves towards rod OR for candidates that have misinterpreted the diagram as repulsion of water then ALLOW Rod repels water / water bends or moves away from rod \checkmark - Like charges repel $\sqrt{ }$ water has both + and - charges / idea of polarisation / AW \checkmark Examiner's Comments The diagram was interpreted differently by candidates. Some thought it attracted (ideal scenario) and others thought it repelled. However marks were made available for both lines of thought as both interpretations were valid from the diagram. It gave a full range of marks and discriminated well with about 10% gaining full marks by including the idea of polarisation. The ideas of repulsion of water and opposite charges repelling were credited 2 marks.
			Total	9	
5	a	i	LED / cells connected the wrong way around $O R \checkmark$ Voltmeter is across the battery/cells OR voltmeter should be across the LED \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 3.2 \mathrm{a}) \end{gathered}$	ALLOW diode IGNORE voltmeter in wrong place Examiner's Comments

			$\mathrm{Q}=4.5$ (C) \checkmark	(AO2.1)	In this case, the equation for charge flow needed to be recalled and the time of 2.5 minutes needs to be changed to 150 seconds, before the answer could be calculated.
		iii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $13.5(\mathrm{~J})$ award 2 marks $\begin{aligned} & E=4.5 \times 3.0 \checkmark \\ & E=13.5(\mathrm{~J}) \checkmark \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} 2.1) \\ (\mathrm{AO} 2.1) \end{gathered}$	ECF from (ii) ALLOW 14(J) Examiner's Comments Most candidates were able to multiply their answer to (ii) by 3.0 to gain the correct answer.
			Total	12	
6	a	i	(Ruler has) equal numbers of protons and electrons / ORA $\sqrt{ }$ So (effects of positive charges and negative charges) cancel out / AW / ORA \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times 1.1) \end{gathered}$	ALLOW equal numbers of positive and negative charges/opposite charges / ORA ALLOW ruler has not lost/gained electrons / ORA ALLOW ruler is/atoms are neutral unless there is a loss/gain of electrons / ORA ALLOW if the ruler had been charged, movement of electrons (to/from the air) would discharge it ALLOW overall/net charge is zero/neutral / ORA IGNORE just charge is neutral
		ii	Electrons are transferred (from/to the ruler or from/to the cloth) / ORA \checkmark And any one from: Charges are no longer equal / AW \checkmark Different numbers of protons and electrons / AW \checkmark Effects no longer cancel out / AW \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2 \times \\ 1.1) \end{gathered}$	ALLOW electrons are lost/gained DO NOT ALLOW protons/positive charges move ALLOW ruler becomes negative/positive with correct movement of electrons $\checkmark \checkmark$
	b	i	They must be opposite/unlike charges / one is positive and one is negative / one is a proton and one is an electron \checkmark And any two from: They are being attracted \checkmark The arrows show a force on the positive (charge)/(charge) B \checkmark Forces/field (lines) go from positive to	$\begin{gathered} 3 \\ (\mathrm{AO} 3 \times 1.2) \end{gathered}$	ALLOW A is positive and B is negative for this mark only

	negative \checkmark (Charge) A is negative AND (charge) B is positive \checkmark		ALLOW forces/field (lines) go from B to A ALLOW maximum of 1 mark if described as opposite poles / positive and negative poles
	Any one from: North and South (poles) (replace positive and negative charges) \checkmark The arrows/field lines go from North to South (as opposed to positive to negative) \checkmark They have similar shape field (patterns) \checkmark Closeness of field lines represents strength of field (in each case) \checkmark Opposite poles (and opposite charges) attract $\sqrt{ }$ Both show direction of field (lines)/forces \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	
	Total	8	

